Ratiometric ultrasensitive electrochemical immunosensor based on redox substrate and immunoprobe

نویسندگان

  • Zhongxue Tang
  • Zhanfang Ma
چکیده

In this work, we presented a ratiometric electrochemical immunosensor based on redox substrate and immunoprobe. Carboxymethyl cellulose-Au-Pb2+ (CMC-Au-Pb2+) and carbon-Au-Cu2+ (C-Au-Cu2+) nanocomposites were firstly synthesized and implemented as redox substrate and immunoprobe with strong current signals at -0.45 V and 0.15 V, respectively. Human immunoglobulin G (IgG) was used as a model analyte to examine the analytical performance of the proposed method. The current signals of CMC-Au-Pb2+ (Isubstrate) and C-Au-Cu2+ (Iprobe) were monitored. The effect of redox substrate and immunoprobe behaved as a better linear relationship between Iprobe/Isubstrate and Lg CIgG (ng mL-1). By measuring the signal ratio Iprobe/Isubstrate, the sandwich immunosensor for IgG exhibited a wide linear range from 1 fg mL-1 to 100 ng mL-1, which was two orders of magnitude higher than other previous works. The limit of detection reached 0.26 fg mL-1. Furthermore, for human serum samples, the results from this method were consistent with those of the enzyme linked immunosorbent assay (ELISA), demonstrating that the proposed immunoassay was of great potential in clinical diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Boehmite Nanoparticles as an Undercoat, and Riboflavin as a Redox Probe for Immunosensor Designing: Ultrasensitive Detection of Hepatitis C Virus Core Antigen

In this study a label-free electrochemical Immunosensor for ultrasensitive detection of Hepatitis C virus core antigen in serum samples was fabricated by using a simple approach. In this method a low-cost and sensitive immunosensor was fabricated based on a boehmite nanoparticles (BNPs) modified glassy carbon. The BNPs provide a specific platform with increased surface area which is capable of ...

متن کامل

Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface

An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...

متن کامل

Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein

In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP). Multifunctionalized graphene nanocomposites (TB-Au-Fe3O4-rGO) were applied to modify the electrode to achieve the amplification of electrochemical signal. TB-Au-Fe3O4-rGO includes the advantages of graphene, ferroferric oxide nanoparticles (Fe3O4 NPs), gold nano...

متن کامل

Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA

A novel and ultrasensitive sandwich-type electrochemical immunosensor was designed for the quantitative detection of carcino-embryonic antigen (CEA). This immunosensor was developed by using the trimetallic NiAuPt nanoparticles on graphene nanosheets (NGs) nanosheets (NiAuPt-NGs) as excellent labels and β-cyclodextrin functionalized reduced graphene oxide nanosheets (CD-NGs) as the platform. Th...

متن کامل

Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors.

The preparation, characterization and application of a three-layer magnetic nanoparticle composed of an Fe(3)O(4) magnetic core, a Prussian Blue (PB) interlayer and a gold shell (it can be abbreviated as Au-PB-Fe(3)O(4)) for an ultrasensitive and reproducible electrochemical immunosensing fabrication were described for the first time in this work. With the employment of the Au-PB-Fe(3)O(4) nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016